
On-line Instruction Flow Obfuscation: Formal
Proof and Proposal for Implementation on
CVA6
Common meeting CT SED and GT AFSEC

30/01/2025

Théo Serru
theo.serru@univ-nantes.fr

ANR-21-CE-39-0017

Jean-Luc Béchennec
Loïg Jezequel

Mikaël Briday
Sébastien Faucou

mailto:theo.serru@univ-nantes.fr

3Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Side-channel attacks exploit

Countermeasures

Software Hardware

● Detection and response
● Obfuscation
● Randomization
● Masking
● Splitting

● Use of custom gates
● Minimization of metal artifacts
● Redundancy
● Detection and response

TimingCache Electromagnetic
waves

Power

Context : hardware mitigation of side-channel attacks

4Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Needed for secure-by-design processors

Side-channel attacks exploit

Countermeasures

● Less studied in the literature
● Lack of formal proof
● Lesser overhead

TimingCache Electromagnetic
waves

Power

● Provably secure
● Flexible by nature
● Widespread
● Incur a higher overhead

Software Hardware

Context : hardware mitigation of side-channel attacks

5Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Implement on-line instruction reordering by modifying the pipeline of a CVA61 core running with RISC-V instruction set architecture (ISA)

Context : hardware mitigation of side-channel attacks

1 https://github.com/openhwgroup/cva6

Main subsystems of the CVA6 core

6Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Implement on-line instruction reordering by modifying the pipeline of a CVA61 core running with RISC-V instruction set architecture (ISA)

Context : hardware mitigation of side-channel attacks

1 https://github.com/openhwgroup/cva6

Extract of the RISC-V ISA

add rd, rs1, rs2
sub rd, rs1, rs2
xor rd, rs1, rs2

RISC-V registers

+ Program counter (pc) that points to the instruction to be executed next

7Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Overview

Contributions

1.Rules for reordering independent instructions

2.Formal proof of correctness and implementation guidelines

3.Achitecture modifications that enables reordering

4.Evaluation of diversity

Focus new hardware, formally proven countermeasure against SC attacks, based on →
code obfuscation (i.e. instruction reordering)

8Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering independent instructions
1.

9Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering instructions

Based on previous works [1, 2], we choose to reorder independent instructions

We will prove that this reordering is sound

[1]: Couroussé, Damien, et al. “Runtime Code Polymorphism as a Protection Against Side Channel Attacks.” In Information Security Theory and Practice, 2016.
[2]: Belleville, Nicolas. “Compilation Pour l’application de Contre-Mesures Contre Les Attaques Par Canal Auxiliaire.” These de doctorat, 2019.

We can swap two consecutive instructions i and i’ if :

● i and i’ are data and control independent
● i’ is not a load or store (for peripheral management)
● i is not a return

add x5, x5, x4
addi x2, x2, 5
add x3, x3, x6

addi x2, x2, 5
add x5, x5, x4
add x3, x3, x6

addi x2, x2, 5
add x3, x3, x6
add x5, x5, x4

add x5, x5, x4
beq x2, x2, 5
add x3, x3, x6

beq x2, x2, 5
add x5, x5, x4
add x3, x3, x6

add x5, x5, x4
add x3, x3, x6
beq x2, x2, 5

Reordering instructions Proof of correctness Architecture model Evaluation of diversityArchitecture proposal

10Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering independent instructions does not change the program behavior, i.e. executing a program P and Preordered
leads to the same program state.

Incoming proof

Reordering instructions Proof of correctness Architecture model Architecture proposal Evaluation of diversity

11Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Instructions i=(o, in, out) are classified into three distinct sets:
● Affectation : and Arithmetic operations→
● Branch : and Branching instructions →
● Call : and Jump instructions→

Executing an instruction changes the value of out as such:
●

Definitions

The state s of a program P is a cuple where and is a valuation of all registers.

In P a step allows to pass from a state s to a state s’ by executing an instruction (e.g. i), it is written

A sequence of steps is called an execution:

Reordering instructions Proof of correctness Architecture model Architecture proposal Evaluation of diversity

12Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

We define the set of all executions of a program as a Control-Flow Tree, i.e. an unfolding of the control-flow graph.

Definitions

Example of a Function from AES Code, and its Associated Control-Flow Tree

n0

...

ni

ni+1

nj

nj+1

nk

nk+1

nk+2

... ...

Reordering instructions Proof of correctness Architecture model Architecture proposal

000120e8 <cleanup_stdio>:
 lw a1,4(a0)
 addi sp,sp,-16
 sw s0,8(sp)
 sw ra,12(sp)
 addi a5,gp,168
 mv s0,a0
 beq a1,a5,12108
 jal 12ff0
 lw a1,8(s0)
 addi a5,gp,272
 beq a1,a5,1211c
 mv a0,s0
 jal 12ff0
 lw a1,12(s0)
 addi a5,gp,376
 beq a1,a5,1213c
 mv a0,s0
 lw s0,8(sp)
 lw ra,12(sp)
 addi sp,sp,16
 j 12ff0
 lw ra,12(sp)
 lw s0,8(sp)
 addi sp,sp,16
 ret

An execution is the labeling of a path:

that is, the sequence:

e.g. lw a1,4(a0)
 addi sp,sp,-16
 sw s0,8(sp)
 sw ra,12(sp)
 addi a5,gp,168
 mv s0,a0
 beq a1,a5,12108
 jal 12ff0
 ...

n0

...

ni

ni+1

nj

nj+1

nk

nk+1

nk+2

... ...

Evaluation of diversity

13Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

A one to one correspondence can be expressed between executions in T and T’, i.e.

n’

np1 np2

p2p1

Reordering Instructions

n

n’

p

n

p

n’ n

p1

n’

p2

Reordering two instructions Reordering two instructions with

T T’

Reordering instructions Proof of correctness Architecture model Architecture proposal

sub x3, x3, x4

add x1, x1, x2

add x1, x1, x2

sub x3, x3, x4 add x1, x1, x2

beq x3, x4, 1422 add x1, x1, x2

beq x3, x4, 1422

Evaluation of diversity

14Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Proof of Correctness
2.

15Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering and independent instructions

Reordering instructions Proof of correctness Architecture model Architecture proposal

n’n

ρpreρpre

n’

ρpost

n

ρpost

add x1, x2, x2
sub x3, x4, x4

Evaluation of diversity

16Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

n’n

ρpreρpre

Reordering and independent instructions

n’

ρpost

n

ρpost

Reordering instructions Proof of correctness Architecture model Architecture proposal

add x1, x2, x2

sub x3, x4, x4

Reg Val

x0 x0

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

x8 x8

x9 x9

x2+x2

x4-x4

Reg Val

x0 x0

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

x8 x8

x9 x9

x2+x2

x4-x4

Evaluation of diversity

17Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

n’n

ρpreρpre

Reordering and dependent instructions

n’

ρpost

n

ρpost

Reordering instructions Proof of correctness Architecture model Architecture proposal

add x3, x2, x2

sub x3, x4, x4

Reg Val

x0 x0

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

x8 x8

x9 x9

x2+x2x4-x4

Reg Val

x0 x0

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

x8 x8

x9 x9

x4-x4x2+x2

Evaluation of diversity

18Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering and independent instructions

Reordering instructions Proof of correctness Architecture model Architecture proposal

By induction, Corollary 1 is a consequence of Theorem 1.
 → Theorem 1 is valid when reordering k independent
instructions

Evaluation of diversity

19Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

n

Reordering Independent Instructions

Reordering instructions Proof of correctness Architecture model Architecture proposal

n

ρpre

ρpre1 ρpre2

n’

n

ρpre

ρpre1 ρpre2

n

Evaluation of diversity

20Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering Independent Instructions

The only difference in the proof is we must show that branching evaluation will be the same, i.e. that instruction n
doesn’t change inn ’

Then, Theorem 2 is valid and Corollary 2 allows to reorder multiple independent instructions over a branching.

Reordering instructions Proof of correctness Architecture model Architecture proposal

add x1, x2, x2

beq x3, x4, 80050

Evaluation of diversity

21Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Simple case→

3.

22Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Inspired by the work of Couroussé et al. [1], we employ a random insertion FIFO to reorder instructions.

i2

i1

i0

FIFO

1) Use our rules to identify insertion slots
2) Insert randomly among possible slots

i6

i5

i4

i3

Instruction queue

Reordering instructions Proof of correctness Architecture model Architecture proposal Evaluation of diversity

23Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

If we reorder only instructions, the behavior of the processor follows Theorem 1.

Reordering instructions Proof of correctness Architecture model Architecture proposal

The processor follows Theorem 1

Evaluation of diversity

24Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Simple case→

Less simple case→

3.

25Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Modern processors use branch prediction

Architecture model for on-line obfuscation

Branch prediction done here And resolved here

Reordering instructions Proof of correctness Architecture model Architecture proposal Evaluation of diversity

26Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

n

Branch prediction is a threat to reordering correctness.

Architecture model for on-line obfuscation

ρpre

i2 i4

i5i3

n’

n’

ρpre

n

n’

ρpre

i4

i5

n

n’

ρpre

n’

ρpre

i2

i3

Control-flow tree Reorder Mispredict branch Flush
Starts from
good address

loose instruction n

We need to save reordered instructions in case of flush

Reordering instructions Proof of correctness Architecture model Architecture proposal Evaluation of diversity

27Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Pipeline ρ0

Label none

Pipeline ρ0 b1

Label 1 1

Pipeline ρ0 ρ2 b1

Label 1 none 1

Insert/reorder b1 and actualize imbrication counter

New rule: save and label instructions that are reordered after a branch/jump

Pipeline ρ0 ρ2

Label 0 none

Commit b1

Decrement counters

Pipeline ρ0

Label 0

Bad prediction = flush if label ≠ 0

Reordering instructions Proof of correctness Architecture model Architecture proposal

Insert/reorder ρ2

Evaluation of diversity

28Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Pipeline ρ0

Label none

Pipeline ρ0 b1

Label 1 1

Pipeline ρ0 ρ2 b1

Label 1 none 1

Insert/reorder b1 and actualize imbrication counter

New rule: save and label instructions that are reordered after a branch/jump

Pipeline ρ4 ρ0 ρ2 b3 b1

Label none 1 2 2 1

Pipeline ρ4 ρ0 ρ2 b3

Label none 0 1 1

Commit b1

Decrement counters

Insert/reorder b3 and actualize imbrication counter
Insert ρ4

Pipeline ρ0

Label 0

Bad prediction = flush if label ≠ 0

Reordering instructions Proof of correctness Architecture model Architecture proposal

Insert/reorder ρ2

Evaluation of diversity

30Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

n

ρpre

i2 i4

i5i3

n’

Original tree Reorder tree Explore the good branch

Reordering instructions Proof of correctness Architecture model Architecture proposal

n’

ρpre

i2 i4

i5i3

n n

n’

ρpre

i2 i4

i5i3

n n

n

ρpre

n’

ρpre

n

n’

ρpre

i4

i5

n

Insert n’ and save n Explore the good branch

FIFO Control-flow tree

1. Case for good prediction

Evaluation of diversity

31Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

n’

ρpre

i4

i5

n

n’

ρpre

i2

i3

Mispredict branch Flush
Starts from good

address

n’

ρpre

Restore saved
instruction

n

n’

ρpre

n

Reordering instructions Proof of correctness Architecture model Architecture proposal

2. Case for misprediction

Reorder tree Explore the good branch

n’

ρpre

i2 i4

i5i3

n n

n’

ρpre

i2 i4

i5i3

n n

Control-flow treeFIFO
Explore the
wrong branch

n’

ρpre

i2 i4

i5i3

n n

“Flush”

n’

ρpre

i2 i4

n n

i3 i5

Evaluation of diversity

32Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Architecture model for on-line obfuscation

Note on exceptions and interruptions:
1) They save the context

2) Execute trap handling procedure

3) Restore the context
 → Control flow is not modified, the proof holds

3.

The FIFO allows to reorder independent instructions and to follow Theorem 1 and 2

33Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

A real architecture for on-line obfuscation
4.

(On-going work)

34Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering instructions Proof of correctness Architecture model Architecture proposal

Implementation proposal

One idea is to add a stage in the CVA6 pipeline

Evaluation of diversity

35Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering instructions Proof of correctness Architecture model Architecture proposal

Implementation proposal

One idea is to add a stage in the CVA6 pipeline

Hardware implementation of the FIFO with dependency management

Evaluation of diversity

36Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering instructions Proof of correctness Architecture model Architecture proposal

Implementation proposal

Branch prediction with global counter is yet to come.

Evaluation of diversity

37Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Evaluation of diversity
5.

38Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Reordering instructions Proof of correctness Architecture model Architecture proposal

Evaluation of diversity

Before the real implementation, we can write a script to have insight on the diversity obtained.

Aes code Questa advanced
simulator

Script

Executable Trace Exhaustive list of
reordered variants

Outputs :
● Number of variants
● Average distance with original

Evaluation of diversity

39Théo Serru et al. – Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Conclusion

40Théo Serru et al.– Online obfuscation of instruction flow: formal proof and implementation on CVA6 – 30/01/2025

Conclusion

We proposed on-line code obfuscation to protect against side-channel attacks with:
● Formal proof of correctness
● Architecture model compliant with the proof
● Clues about a real implementation (on-going)
● Diversity measurements (on-going)

In the future:
● Implement architecture on a simulator
● Tests against side-channels (overhead vs security)
● Implement other obfuscation methods (noise injection, register reallocation, etc.)
● Tests against other attacks

Thanks for listening

Common meeting CT SED and GT AFSEC

30/01/2025

Théo Serru
theo.serru@univ-nantes.fr

ANR-21-CE-39-0017

Jean-Luc Béchennec
Loïg Jezequel

Mikaël Briday
Sébastien Faucou

mailto:theo.serru@univ-nantes.fr

	SecV – Secure RISC-V processor
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

