

K/K_{min} diagnosability analysis in (bounded and unbounded) labeled Petri nets by means of linear algebraic optimization

Mohamed Ghazel

University Gustave Eiffel, Lille Campus COSYS/ESTAS, F-59650 Villeneuve d'Ascq

CNAM Paris, 30th January 2025

- **(2)** K/K_{min} -diagnosability analysis
- **③** *K*-diagnosability over a compacted horizon

Experiments

Diagnosability and diagnosis

The diagnosis (Hamscher et al., 1992)

The diagnosis consists of:

- detecting the occurrence of faulty behaviors in a system

 - identifying/Isolating occurred faults (which faults? in which part of the system?)

Then intervening on the system to repair it.

Diagnosability (Pencolé Y., 2008)

The ability for a system and its monitoring mechanisms to exhibit observations associated with each anticipated faulty situation.

System Modeling: Labeled Petri Net

Petri Net (PN)

A PN is a quadruple $\mathcal{N} = (P, T, W^-, W^+)$

- P, T: finite sets consisting respectively of places and transitions;
- $W^- : P \times T \to \mathbb{N}$: pre-incidence matrix;
- $W^+ : P \times T \to \mathbb{N}$: post-incidence matrix;
- $W = W^+ W^-$: incidence matrix of net \mathcal{N} .

Marked Petri net

A marked PN is a pair $<\mathcal{N}, M_0>$ such that $\mathcal N$ is a PN and M_0 is the known initial marking.

Labeled Petri Net (LPN)

An LPN is a marked PN in which we associate a label with each transition in T. Let the labeling function be:

$$\mathcal{L}: T \to E \cup \{\varepsilon\}$$

System Modeling: Partial Observability

A model = Normal behavior + Faulty behavior

Fault Modeling

Notations:

•
$$\mathcal{N}_o = (P, T_o, W_o^-, W_o^+)$$
 with $W_o^- = W_{|T_o}^-$ and $W_o^+ = W_{|T_o}^+$;
• $\mathcal{N}_u = (P, T_u, W_u^-, W_u^+)$ with $W_u^- = W_{|T_u}^-$ and $W_u^+ = W_{|T_u}^+$;

•
$$\mathcal{N}_u = (P, T_u, W_u^-, W_u^+)$$
 with $W_u^- = W_{|T_u|}^-$ and $W_u^+ = 1$
• $\varepsilon_i \in T_u$ and $t_i \in T_o$

 K/K_{min} -diagnosability analysis

K-diagnosability over a compacted horizon

Experiments

Conclusion

Introduction

System Modeling: Indiscernible Observable Transitions

Projection Operator

$$P_{l}: T^{*} \longrightarrow E^{*}$$

 $\sigma \longrightarrow w = \mathcal{L}(P_{o}(\sigma))$

Inverse Projection Operator

$$\begin{array}{rcl} P_l^{-1}: & E^* \longrightarrow & T^* \\ & w \longrightarrow & P_l^{-1}(w) = \{\sigma \in T^* \mid P_l(\sigma) = w\} \end{array}$$

 $P_{l}(t_{1}t_{3}t_{4}) = acb$ $P_{l}^{-1}(acb) = \{t_{1}t_{3}t_{4}, t_{2}t_{3}t_{4}, t_{1}t_{3}t_{5}, t_{2}t_{3}t_{5}\}$

Mohamed Ghazel

Séminaire GT SED & GT AFSEC

Univ. G. Eiffel, Cosys/Estas

6 / 43

Definition of diagnosability

Definition of diagnosability

Introduction

Definition of diagnosability

Diagnosability Sampath95

A live and prefix-closed language *L* is said to be diagnosable with respect to a projection function *P* and a set of faults Σ_f iff:

$$\exists n \in \mathbb{N}) \ [\forall s \in \Psi(\Sigma_f)] \ (\forall t \in L/s) \ [|t| \ge n \Rightarrow D]$$

with $D : \omega \in P_L^{-1}[P(s.t)] \Rightarrow \Sigma_f \in \omega.$

Mohamed Ghazel

Conclusion

Introduction

K-diagnosability

Overview

Contributions & Reference works

Contributions

- Algebraic formulation of diagnosability properties;
- **O** Usage of linear optimization techniques for analyzing these properties.

Objectifs:

- Advantage relatively to graph-based approaches: avoid building the state space of the Petri net \Rightarrow tackling combinatorial explosion
- Taking advantages of standard techniques of algebraic resolution (available tools/libraries)

Reference works:

- F. Basile, P. Chiacchio, G. De Tommasi, On K -diagnosability of Petri nets via integer linear programming, Automatica 48, 2012
- YuanLin Wen and Muder Jeng, Diagnosability analysis based on T-invariants of petri nets, in Proceedings of IEEE Networking, Sensing and Control, pages 371–376, 2005.

2 K/K_{min} -diagnosability analysis

Solution K-diagnosability over a compacted horizon

Experiments

Conclusion

K/K_{min} -diagnosability analysis

• For our first contribution, the problem of *K*-diagnosability can be reformulated as follows:

```
Given an LPN and a fault class T_f, for a given K \in \mathbb{N}^*,
```

- Is T_f K-diagnosable?
- And if so, what is the minimum value $K_{min} \leq K$ that ensures K_{min} -diagnosability of T_f ?

• The considered assumptions

H0. The LPN does not reach a deadlock after firing a fault transition.

H1. The unobservable subnet is acyclic.

H2. A sufficient maximal length J_K of the prefixes that activate fault class T_f for the first time, is known (J_K is inspired from [Basile et al., 2012], but is different from parameter \mathcal{J} in [Basile et al., 2012]).

K/K_{min} -diagnosability analysis

Reformulation of *K*-diagnosability

An LPN is K-diagnosable with respect to a fault class T_f if and only if there does not exist any pair (σ, σ') of firing sequences such that:

•
$$\sigma = \sigma_{bf} \varepsilon_f \sigma_{af}$$
, with $\varepsilon_f \in T_f$, $\sigma_{bf} \in \psi(T_f)$ and $|\sigma_{af}| \ge K$

•
$$T_f \notin \sigma'$$
, with $P_l(\sigma) = P_l(\sigma')$

K/K_{min} -diagnosability analysis

K_{min} -diagnosability $\longrightarrow K$ -diagnosability

The K_{min} -diagnosability of a fault class T_f is defined as the determination of the minimum value K_{min} that ensures the diagnosability of T_f . K-diagnosability can be inferred as follows:

- If $K_{min} = 1$ then T_f is 1-diagnosable and there is no value $\kappa, 1 \le \kappa \le K$ such that T_f is not κ -diagnosable.
- If $2 \le K_{min} \le K$ then T_f is K_{min} -diagnosable and $\forall \kappa : 1 \le \kappa < K_{min}$, T_f is not κ -diagnosable.

K/K_{min} -diagnosability analysis

Determination of K_{min} :

Solution 1: Iterative approach

- We assume that T_f is K-diagnosable and that $K \ge K_{min} \ge 2$.
- **2** We increment the value of κ iteratively and investigate the existence of two feasible firing sequences $\sigma, \sigma' \in T^*$ satisfying the following condition:

$$C_{\sigma-\sigma'}(\kappa): \begin{cases} \sigma = \sigma_{bf}\varepsilon_{f}\sigma_{af}, \sigma_{bf} \in \psi(T_{f}), \varepsilon_{f} \in T_{f}, |\sigma_{af}| = \kappa \\ T_{f} \notin \sigma', P_{l}(\sigma) = P_{l}(\sigma') \end{cases}$$

() We stop incrementing κ as soon as the condition $C_{\sigma-\sigma'}(\kappa)$ is no longer satisfied $\implies K_{min}$ corresponds to the last tested value of κ .

 K/K_{min} -diagnosability analysis

K-diagnosability over a compacted horizon

Experiments

Conclusion

 K/K_{min} -diagnosability Analysis

Disadvantage of Solution 1

A large number of iterations, especially if K_{min} is high

∜

Solution 2 : Contribution 1

Determine K_{min} in a single iteration as a solution of a linear optimization problem (and infer K-diagnosability)

Séminaire GT SED & GT AFSEC

17 / 43

General principle of the approach

Reformulation of K and Kmin-diagnosability

Determination of K_{min} :

Solution 2: Single ILP-based approach

18 / 43

K/K_{min} -diagnosability analysis

Proposal: Characterization of J_K

The verification of K-diagnosability of T_f , based on the condition $C_{\sigma,\sigma'}(\kappa)$ with $\kappa \in [1; K]$, can be determined while considering only a subset of prefixes in $\psi(T_f)$ of maximum length J_K defined as follows:

$$J_{K} = \max_{1 \le \kappa \le K} \min_{C_{\sigma,\sigma'}(\kappa)} |\sigma_{bf}|$$

 $J_{\mathcal{K}}$ is finite even for unbounded nets \Rightarrow Contribution 1 applies to both <u>bounded</u> <u>and unbounded LPNs</u> (cf. our Automatica paper).

Algebraic Modeling

1- Modeling Fault Sequences σ

 $\int x^{<i>} = \pi(t^{<i>})$

 $X = [(x^{<1>})^T (x^{<2>})^T \dots (x^{</>})^T (x^{</+1>})^T (x^{</+2>})^T \dots (x^{</+K+1>})^T]^T$

Mohamed Ghazel

20 / 43

 K/K_{min} -diagnosability analysis

Experiments Conclusion

K/K_{min} -diagnosability analysis

2- Modeling of fault-free sequences σ' such that $P_l(\sigma') = P_l(\sigma)$

Theorem (Murata, 1989)

In an acyclic PN, marking M is reachable from M_0 *iff* there exists a non negative integer solution x satisfying $M = M_0 + W.x$.

 \implies X' solution of $A_n^{J,K}$.X' $\leq b_n^{J,K}$ is the image of a firable sequence under the assumption of acyclicity of the unobservable subnet

Mohamed Ghazel

Séminaire GT SED & GT AFSEC

K/K_{min} -diagnosability analysis

3- Modeling indistinguishability (of observable transitions)

$$\wp \cdot x_o^{} = y^{}$$
; $\forall i \in [1, J + K + 1]$

$$P_l(\sigma') = P_l(\sigma) \implies \wp \cdot x_o^{} = \wp \cdot x'_o^{} \implies \mathbf{D}.\mathbf{X} = \mathbf{D}.\mathbf{X}'$$

K/K_{min} -diagnosability analysis

Final Model

Theore<u>m</u>

The existence of some pair of sequences (σ, σ') that satisfies $C_{\sigma-\sigma'}(\kappa), 1 \le \kappa \le K$ (under the assumption H1 of acyclicity) \iff the existence of two vectors $(X, X') \in \mathbb{N}^{(J+K+1).|T|} \times \mathbb{N}^{(J+K+1).|T|}$ satisfying the following polyhedron:

$$\bullet A^{J,K} \cdot \begin{pmatrix} X \\ X' \end{pmatrix} \le b^{J,K}, A^{J,K} = \begin{pmatrix} A_f^{J,K} & \mathbf{0} \\ \mathbf{0} & A_n^{J,K} \\ \mathbf{D} & -\mathbf{D} \\ -\mathbf{D} & \mathbf{D} \end{pmatrix} \text{ and } b^{J,K} = \begin{pmatrix} b_f^{J,K} \\ b_n^{J,K} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

 $\textcircled{O} \ \exists \sigma, \ \sigma' \in \mathcal{T}^* \ \text{with} \ \Pi(\sigma) = X, \Pi(\sigma') = X', M_0[\sigma \succ \ \text{and} \ M_0[\sigma' \succ$

Conclusion

K/K_{min} -diagnosability analysis

$$\kappa_{max} = \max_{\mathbb{N}} \sum_{i=J+2}^{J+K+1} c.x^{\langle i \rangle}$$

s.t $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$
 $\exists \sigma, \sigma' \in T^* \Pi(\sigma) = X, \Pi(\sigma') = X'$

K/K_{min} -diagnosability analysis

Diagnosability under the assumption of acyclicity of unobservable subnet

Theorem: Necessary and Sufficient Condition for K-Diagnosability

Consider an LPN with an acyclic unobservable subnet and a fault class T_f . Given $K \in \mathbb{N}^*$, T_f is K-diagnosable iff at least one of the following two conditions is satisfied:

-i-
$$A^{J,K}$$
. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits no solution, or
-ii- $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits a solution and $\max_{\mathbb{N}}(\lambda^{\top}.X) < K$

Corollary: K_{min}-diagnosability

Consider an LPN with an acyclic unobservable subnet. If the fault class T_f is K-diagnosable then T_f is K_{min} -diagnosable with K_{min} is defined as follows: - If $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits no solution, then $K_{min} = 1$. - If $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits a solution and $\max_{\mathbb{N}}(\lambda^{\top}.X) < K$, then $K_{min} = \max_{\mathbb{N}}(\lambda^{\top}.X) + 1$.

Mohamed Ghazel

K/K_{min} -diagnosability analysis - case of cylic unobservable subnet

The considered assumptions

H0. The LPN does not reach a deadlock after firing a fault transition.

H1. The unobservable subnet is acyclic.

H2. A sufficient maximal length J_K of the prefixes that activate fault class T_f for the first time, is known.

Cyclic Case - peculiarity

For an LPN with a cyclic unobservable subnet, the obtained pair (X, X') may be a spurious solution.

K/K_{min} -diagnosability Analysis

Diagnosability in the presence of cycles in the unobservable subnet

Theorem: Sufficient Condition for K-Diagnosability

Consider an LPN that may contain unobservable cycles. Given a fault class T_f and a value $K \in \mathbb{N}^*$, T_f is K-diagnosable If at least one of the following two conditions is satisfied -i- $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ does not admit a solution, or -ii- $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits a solution and $\max_{\mathbb{N}}(\lambda^{\top}.X) < K$.

Corollary: K_{cyc}-diagnosability

Consider an LPN that may contain unobservable cycles. If the fault class T_f is K-diagnosable, then T_f is K_{cyc} -diagnosable, where K_{cyc} is defined as follows: : - If $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ does not admit a solution, then $K_{cyc} = K_{min} = 1$. - If $A^{J,K}$. $\begin{pmatrix} X \\ X' \end{pmatrix} \leq b^{J,K}$ admits a solution and $\max_{\mathbb{N}}(\lambda^{\top}.X) < K$, then $K_{cyc} = \max_{\mathbb{N}}(\lambda^{\top}.X) + 1$.

$$K_{cyc} \in [K_{min}, K]$$

Mohamed Ghazel

Séminaire GT SED & GT AFSEC

K/K_{min}-diagnosability analysis

③ *K*-diagnosability over a compacted horizon

Experiments

Problem Statement

Mohamed Ghazel

Séminaire GT SED & GT AFSEC

Univ. G. Eiffel, Cosys/Estas

29 / 43

K-diagnosability over a compacted horizon

Considered assumptions

The considered assumptions:

H0. The LPN does not reach a deadlock after firing a fault transition.

H1. The unobservable subnet is acyclic.

H2. A sufficient maximal length J_K of the prefixes that activate fault class T_f for the first time, is known

Solution : The compression of the count vector X corresponding to the fault sequence σ , and the count vector X' corresponding to the indistinguishable fault-free sequence σ' over the interval [1...J]. The compressed vectors are defined as follows:

- 1- Modeling faulty sequences $\sigma \Rightarrow A_f^K.X_c \leq b_f^K$
- 2- Modeling fault-free sequences $\sigma' \Rightarrow A_n^K . X_c' \leq b_n^K$
- 3- Formulating indistinguishability between σ and $\sigma' \Rightarrow D_c.X_c = D_c.X_c'$

↓ Final model

Theorem

The existence of sequences σ, σ' satisfying $C_{\sigma-\sigma'}(\kappa), 1 \le \kappa \le K$ \implies the existence of two vectors $(X_c, X'_c) \in \mathbb{N}^{(K+2).|\mathcal{T}|} \times \mathbb{N}^{(K+2).|\mathcal{T}|}$ satisfying the following polyhedron:

$$A^{K} \cdot \begin{pmatrix} X_{c} \\ X'_{c} \end{pmatrix} \leq b^{K}$$
with $A^{K} = \begin{pmatrix} A_{f}^{K} & \mathbf{0} \\ \mathbf{0} & A_{n}^{K} \\ D_{c} & -D_{c} \\ -D_{c} & D_{c} \end{pmatrix}$ and $b^{K} = \begin{pmatrix} b_{f}^{K} \\ b_{n}^{K} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$

Mohamed Ghazel

K-diagnosability condition

Theorem: Sufficient Condition for K-Diagnosability

Consider an LPN and a fault class T_f . Given $K \in \mathbb{N}^*$, T_f is K-diagnosable If one of the following two conditions is satisfied:

$$\begin{array}{l} -\text{i-} A^{K}. \left(\begin{array}{c} X_{c} \\ X_{c}^{\prime} \end{array}\right) \leq b^{K} \text{ does not admit a solution, or} \\ -\text{ii-} A^{K}. \left(\begin{array}{c} X_{c} \\ X_{c}^{\prime} \end{array}\right) \leq b^{K} \text{ admits a solution and } \max_{\mathbb{N}}(\lambda_{c}^{\top}.X_{c}) < K. \end{array}$$

Corollary: *K_c*-diagnosability

If the sufficient condition for K-diagnosability is satisfied, then not only can we conclude that T_f is K-diagnosable, but also that it is K_c -diagnosable, where:

a)
$$K_c = 1$$
 if A^K . $\begin{pmatrix} X_c \\ X'_c \end{pmatrix} \leq b^K$ does not admit a solution.

b) $K_c = \max_{\mathbb{N}} (\lambda_c^{\top} X_c) + 1$ if $A^K \begin{pmatrix} X_c \\ X'_c \end{pmatrix} \le b^K$ admits a solution < K.

We can also infer that:

$$K_{min} \leq K_{cyc} \leq K_c \leq K$$

Mohamed Ghazel

- K/K_{min}-diagnosability analysis
- Solution K-diagnosability over a compacted horizon

Experiments

Conclusion

Experiments

Application: Presentation of a railway level crossing benchmark [Ghazel and Liu, WODES'2016]

Benchmark: a level crossing control system with n tracks, with 2 fault classes :

- $\{t_6\}$: early opening of the gate
- $\bigcup \{ (t_{i,4}, ig) \}$: train detection failure

Evaluations: We set K to 125 and test the K/K_{min} -diagnosability of $\{t_6\}$ while incrementing the number of tracks n from 1 to 18.

Figure: A level crossing system (single track)

M. Ghazel and B. Liu, A customizable railway benchmark to deal with fault diagnosis issues in DES, 13th International Workshop on Discrete Event Systems (WODES), pages 177–182, 2016.

Figure: The PN model of the LC system (multi-track)

Mohamed Ghazel

Experiments

Obtained Results

n K-diag	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
K _{min}	7	13	19	25	31	37	43	49	55	61	67	73	79	85	91	97	103	109
K _c	7	13	19	25	31	37	43	49	55	61	67	73	79	85	91	97	103	109

Introduction	 					
	тr			с н	nı	п

 K/K_{min} -diagnosability analysis

Experiments

Comparative study

Experiments

Comparative study

K/K_{min}-diagnosability analysis

Solution K-diagnosability over a compacted horizon

Experiments

Conclusion

Contributions: Two algebraic approaches based on ILP formulations for the analysis of K/K_{min} -diagnosability of DES modeled as partially observable LPN, which can be unbounded.

Approach 1 :

- A necessary and sufficient condition for *K*-diagnosability under the assumption of acyclicity of the unobservable subnet.
- If the established condition is met, the minimal value $K_{min} \leq K$ ensuring K_{min} -diagnosability is calculated simultaneously.
- A sufficient condition for *K*-diagnosability is established in the case of a cyclic unobservable subnet.
- In case such a condition is fulfilled, a value K_{cyc} ≤ K ensuring diagnosability is also determined.

Approach 2 :

- The elimination of parameter J, which is difficult to determine,
- The reduction of the system's size and thus the computational complexity.
- A sufficient condition for K-diagnosability over a compacted horizon is established.
- If the established condition of K-diagnosability is fulfilled, a value $K_c \leq K$ ensuring K_c -diagnosability is also determined.
- Some characterization of $J(J_K)$ was also made (cf. paper).

THANK YOU FOR YOUR ATTENTION

References:

- Amira Chouchane, Mohamed Ghazel, Abderraouf Boussif, K-diagnosability analysis of bounded and unbounded Petri nets using linear optimization, Automatica, Vol. 147, 2023.
- Amira Chouchane, Mohamed Ghazel, An efficient algorithm for k-diagnosability analysis of bounded and unbounded petri nets, WODES'2024, Rio de Janeiro, 2024.

Other related work:

• Amira Chouchane, Mohamed Ghazel, Fault-prognosability, K-step prognosis and K-step predictive diagnosis in partially observed petri nets by means of algebraic techniques, Automatica, Vol. 162, 2024.